
Join optimization in data integration systems

Maurin Gilles, Maxime Buron

Data integration

Mediator

Relational JSon RDF

Independent and

heterogeneous

data sources

Query Results
Unified language

Query plansQuery plans

Pipelined hashjoin

Plan transformation Optimizing plans

Future work

User queries are parsed as logical expressions over relational

algebra. They describe in which order the operators are executed.

I need all x values that appear in A, B and C at the same time.

πA.x((A⨝A.x=B.xB)⨝A.x=C.xC) ⇔ πA.x((A ⨝A.x=C.xC)⨝A.x=B.xB)

A B

C

A C

B⇔

Use of hashtables on specific columns.

1 Adina 3
2 Logan 2
3 Matéu 2
4 Maurin 1
5 Roméo 1
6 Théau 2

1 2 3
t1
t2
t3
t4
t5
t6

t4
t5

t2
t3
t6

t1 A B

HTA HTB

Algortihm.

Table T : A or B, alternates at each iteration

While (remaining tuples in A or B)

1. Take a tuple from T

2. Insert this tuple in the hashtable of T

3. Search for matches of this tuple in the other hashtable

4. If results are found, return them

Visualisation.

Advantages.

> No initialization time, compared to usual hashjoin. The size of the

sources doesn’t impact the time we wait before the first results are

found.

> Under certain conditions, hashtables can be used for multiple joins.

> It is symetrical, thus reducing the space of equivalent plans.

Hypotheses.

Each query can be

resolved by a space of

equivalent plans

> Joins are implemented using pipelined hashjoin.

> Join tree represents a star query, meaning the join

conditions are equalities on the same attributes :

(A.x = B.y = C.z)

We propose to explore the space of join trees by

applying local transformations, which can be applied

during the execution under certain hypotheses.

Two transformations.

A B

C

A B

C

B A

C

B A

C

Make no difference

thanks to symetry

C B

A

A C

B

Transformation 1

Transformation 2

Trees with more joins.

Those transformations can

be applied recursively to find

Selectivity.

𝑎𝐴𝐵 =
𝐴⨝𝐵

𝐴 𝐵
Where 𝑃 is the cardinality of a subplan,

and

⇔ 𝐴⨝𝐵 = 𝐴 𝐵 𝑎𝐴𝐵

Cost model.

𝑐𝑜𝑠𝑡 =෍ 𝑃𝑖⨝𝑃𝑗

𝑎𝐴𝐵 ∈ 0,1

Example.

Let 𝐴 = 10 ; 𝐵 = 10,000 ; 𝐶 = 10,000

A B

C

𝛼𝐴,𝐵 = 1 ; 𝛼𝐴,𝐶 = 0.01 ; 𝛼𝐵,𝐶 = 0.0000001

cost 100,000 1000 10

A C

B

C B

A

for 𝑃𝑖⨝𝑃𝑗 internal join in the tree.

Moreover, there are several implementations for each operator

Search for a “best plan”

● Fix performance issues in the implementation.

● Find plan transformations for joins with join conditions other than star queries.

● Take into account the properties of the different sources in the cost model.

● Implement the cost model and the plan transformations during execution.

● Determine when the selectivity measured during execution is reliable enough, and

when its difference with estimated selectivity justify a plan transformation.

The objective is to execute a plan having a minimal cost : the total amount of tuples

generated during the execution.

Implementation.

We have implemented the pipelined

hashjoin on a java project called

tatooine. It allowed us to make

experiments by simulating multiple

plans with multiple sources.

Results.

As expected, the pipelined hashjoin

is faster to find the first tuples.

However, our implementation is

about twice slower than the usual

hashjoin in most cases.

B

C

C BD E D E

C

B

D E

all the plans easily

accessible from a

certain one.

Optimization cycle.

Measure selectivity during execution → Find a better plan → Apply transformation

Why we use it: We use pipelined hashjoins because it enables to apply plan transformations during execution by keeping the same hashtables.

	Diapositive 1

